\(\int \frac {a^2-b^2 \cos ^2(c+d x)}{(a+b \cos (c+d x))^{5/2}} \, dx\) [672]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 32, antiderivative size = 165 \[ \int \frac {a^2-b^2 \cos ^2(c+d x)}{(a+b \cos (c+d x))^{5/2}} \, dx=\frac {4 a \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{\left (a^2-b^2\right ) d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}-\frac {2 \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{d \sqrt {a+b \cos (c+d x)}}-\frac {4 a b \sin (c+d x)}{\left (a^2-b^2\right ) d \sqrt {a+b \cos (c+d x)}} \]

[Out]

-4*a*b*sin(d*x+c)/(a^2-b^2)/d/(a+b*cos(d*x+c))^(1/2)+4*a*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*Ellip
ticE(sin(1/2*d*x+1/2*c),2^(1/2)*(b/(a+b))^(1/2))*(a+b*cos(d*x+c))^(1/2)/(a^2-b^2)/d/((a+b*cos(d*x+c))/(a+b))^(
1/2)-2*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2)*(b/(a+b))^(1/2))*(
(a+b*cos(d*x+c))/(a+b))^(1/2)/d/(a+b*cos(d*x+c))^(1/2)

Rubi [A] (verified)

Time = 0.30 (sec) , antiderivative size = 165, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.219, Rules used = {3095, 2833, 2831, 2742, 2740, 2734, 2732} \[ \int \frac {a^2-b^2 \cos ^2(c+d x)}{(a+b \cos (c+d x))^{5/2}} \, dx=-\frac {4 a b \sin (c+d x)}{d \left (a^2-b^2\right ) \sqrt {a+b \cos (c+d x)}}+\frac {4 a \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{d \left (a^2-b^2\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}-\frac {2 \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{d \sqrt {a+b \cos (c+d x)}} \]

[In]

Int[(a^2 - b^2*Cos[c + d*x]^2)/(a + b*Cos[c + d*x])^(5/2),x]

[Out]

(4*a*Sqrt[a + b*Cos[c + d*x]]*EllipticE[(c + d*x)/2, (2*b)/(a + b)])/((a^2 - b^2)*d*Sqrt[(a + b*Cos[c + d*x])/
(a + b)]) - (2*Sqrt[(a + b*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*b)/(a + b)])/(d*Sqrt[a + b*Cos[c +
 d*x]]) - (4*a*b*Sin[c + d*x])/((a^2 - b^2)*d*Sqrt[a + b*Cos[c + d*x]])

Rule 2732

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[2*(Sqrt[a + b]/d)*EllipticE[(1/2)*(c - Pi/2
+ d*x), 2*(b/(a + b))], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2734

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[a + b*Sin[c + d*x]]/Sqrt[(a + b*Sin[c +
 d*x])/(a + b)], Int[Sqrt[a/(a + b) + (b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 -
 b^2, 0] &&  !GtQ[a + b, 0]

Rule 2740

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/(d*Sqrt[a + b]))*EllipticF[(1/2)*(c - P
i/2 + d*x), 2*(b/(a + b))], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2742

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[(a + b*Sin[c + d*x])/(a + b)]/Sqrt[a
+ b*Sin[c + d*x]], Int[1/Sqrt[a/(a + b) + (b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a
^2 - b^2, 0] &&  !GtQ[a + b, 0]

Rule 2831

Int[((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])/Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[(b*c
 - a*d)/b, Int[1/Sqrt[a + b*Sin[e + f*x]], x], x] + Dist[d/b, Int[Sqrt[a + b*Sin[e + f*x]], x], x] /; FreeQ[{a
, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0]

Rule 2833

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(-(
b*c - a*d))*Cos[e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(f*(m + 1)*(a^2 - b^2))), x] + Dist[1/((m + 1)*(a^2 - b
^2)), Int[(a + b*Sin[e + f*x])^(m + 1)*Simp[(a*c - b*d)*(m + 1) - (b*c - a*d)*(m + 2)*Sin[e + f*x], x], x], x]
 /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && LtQ[m, -1] && IntegerQ[2*m]

Rule 3095

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Dist[
C/b^2, Int[(a + b*Sin[e + f*x])^(m + 1)*Simp[-a + b*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, e, f, A, C, m}, x
] && EqQ[A*b^2 + a^2*C, 0]

Rubi steps \begin{align*} \text {integral}& = -\int \frac {-a+b \cos (c+d x)}{(a+b \cos (c+d x))^{3/2}} \, dx \\ & = -\frac {4 a b \sin (c+d x)}{\left (a^2-b^2\right ) d \sqrt {a+b \cos (c+d x)}}+\frac {2 \int \frac {\frac {1}{2} \left (a^2+b^2\right )+a b \cos (c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx}{a^2-b^2} \\ & = -\frac {4 a b \sin (c+d x)}{\left (a^2-b^2\right ) d \sqrt {a+b \cos (c+d x)}}+\frac {(2 a) \int \sqrt {a+b \cos (c+d x)} \, dx}{a^2-b^2}-\int \frac {1}{\sqrt {a+b \cos (c+d x)}} \, dx \\ & = -\frac {4 a b \sin (c+d x)}{\left (a^2-b^2\right ) d \sqrt {a+b \cos (c+d x)}}+\frac {\left (2 a \sqrt {a+b \cos (c+d x)}\right ) \int \sqrt {\frac {a}{a+b}+\frac {b \cos (c+d x)}{a+b}} \, dx}{\left (a^2-b^2\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}-\frac {\sqrt {\frac {a+b \cos (c+d x)}{a+b}} \int \frac {1}{\sqrt {\frac {a}{a+b}+\frac {b \cos (c+d x)}{a+b}}} \, dx}{\sqrt {a+b \cos (c+d x)}} \\ & = \frac {4 a \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{\left (a^2-b^2\right ) d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}-\frac {2 \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{d \sqrt {a+b \cos (c+d x)}}-\frac {4 a b \sin (c+d x)}{\left (a^2-b^2\right ) d \sqrt {a+b \cos (c+d x)}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.52 (sec) , antiderivative size = 134, normalized size of antiderivative = 0.81 \[ \int \frac {a^2-b^2 \cos ^2(c+d x)}{(a+b \cos (c+d x))^{5/2}} \, dx=\frac {4 a (a+b) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )-2 \left (a^2-b^2\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )-4 a b \sin (c+d x)}{(a-b) (a+b) d \sqrt {a+b \cos (c+d x)}} \]

[In]

Integrate[(a^2 - b^2*Cos[c + d*x]^2)/(a + b*Cos[c + d*x])^(5/2),x]

[Out]

(4*a*(a + b)*Sqrt[(a + b*Cos[c + d*x])/(a + b)]*EllipticE[(c + d*x)/2, (2*b)/(a + b)] - 2*(a^2 - b^2)*Sqrt[(a
+ b*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*b)/(a + b)] - 4*a*b*Sin[c + d*x])/((a - b)*(a + b)*d*Sqrt
[a + b*Cos[c + d*x]])

Maple [A] (verified)

Time = 25.98 (sec) , antiderivative size = 371, normalized size of antiderivative = 2.25

method result size
default \(-\frac {2 \left (4 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a b -\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-\frac {2 b \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{a -b}+\frac {a +b}{a -b}}\, F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {-\frac {2 b}{a -b}}\right ) a^{2}+b^{2} \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-\frac {2 b \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{a -b}+\frac {a +b}{a -b}}\, F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {-\frac {2 b}{a -b}}\right )+2 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-\frac {2 b \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{a -b}+\frac {a +b}{a -b}}\, E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {-\frac {2 b}{a -b}}\right ) a^{2}-2 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-\frac {2 b \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{a -b}+\frac {a +b}{a -b}}\, b E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {-\frac {2 b}{a -b}}\right ) a \right )}{\left (a -b \right ) \left (a +b \right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 b \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+a +b}\, d}\) \(371\)
parts \(\text {Expression too large to display}\) \(1344\)

[In]

int((-b^2*cos(d*x+c)^2+a^2)/(a+cos(d*x+c)*b)^(5/2),x,method=_RETURNVERBOSE)

[Out]

-2*(4*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^2*a*b-(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*b/(a-b)*sin(1/2*d*x+1/2*c)^
2+(a+b)/(a-b))^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*a^2+b^2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2
*b/(a-b)*sin(1/2*d*x+1/2*c)^2+(a+b)/(a-b))^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))+2*(sin(1/2*d
*x+1/2*c)^2)^(1/2)*(-2*b/(a-b)*sin(1/2*d*x+1/2*c)^2+(a+b)/(a-b))^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b
))^(1/2))*a^2-2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*b/(a-b)*sin(1/2*d*x+1/2*c)^2+(a+b)/(a-b))^(1/2)*b*EllipticE(c
os(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*a)/(a-b)/(a+b)/sin(1/2*d*x+1/2*c)/(-2*b*sin(1/2*d*x+1/2*c)^2+a+b)^(1/2)/
d

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.12 (sec) , antiderivative size = 523, normalized size of antiderivative = 3.17 \[ \int \frac {a^2-b^2 \cos ^2(c+d x)}{(a+b \cos (c+d x))^{5/2}} \, dx=-\frac {12 \, \sqrt {b \cos \left (d x + c\right ) + a} a b^{2} \sin \left (d x + c\right ) + {\left (\sqrt {2} {\left (-i \, a^{2} b + 3 i \, b^{3}\right )} \cos \left (d x + c\right ) + \sqrt {2} {\left (-i \, a^{3} + 3 i \, a b^{2}\right )}\right )} \sqrt {b} {\rm weierstrassPInverse}\left (\frac {4 \, {\left (4 \, a^{2} - 3 \, b^{2}\right )}}{3 \, b^{2}}, -\frac {8 \, {\left (8 \, a^{3} - 9 \, a b^{2}\right )}}{27 \, b^{3}}, \frac {3 \, b \cos \left (d x + c\right ) + 3 i \, b \sin \left (d x + c\right ) + 2 \, a}{3 \, b}\right ) + {\left (\sqrt {2} {\left (i \, a^{2} b - 3 i \, b^{3}\right )} \cos \left (d x + c\right ) + \sqrt {2} {\left (i \, a^{3} - 3 i \, a b^{2}\right )}\right )} \sqrt {b} {\rm weierstrassPInverse}\left (\frac {4 \, {\left (4 \, a^{2} - 3 \, b^{2}\right )}}{3 \, b^{2}}, -\frac {8 \, {\left (8 \, a^{3} - 9 \, a b^{2}\right )}}{27 \, b^{3}}, \frac {3 \, b \cos \left (d x + c\right ) - 3 i \, b \sin \left (d x + c\right ) + 2 \, a}{3 \, b}\right ) - 6 \, {\left (i \, \sqrt {2} a b^{2} \cos \left (d x + c\right ) + i \, \sqrt {2} a^{2} b\right )} \sqrt {b} {\rm weierstrassZeta}\left (\frac {4 \, {\left (4 \, a^{2} - 3 \, b^{2}\right )}}{3 \, b^{2}}, -\frac {8 \, {\left (8 \, a^{3} - 9 \, a b^{2}\right )}}{27 \, b^{3}}, {\rm weierstrassPInverse}\left (\frac {4 \, {\left (4 \, a^{2} - 3 \, b^{2}\right )}}{3 \, b^{2}}, -\frac {8 \, {\left (8 \, a^{3} - 9 \, a b^{2}\right )}}{27 \, b^{3}}, \frac {3 \, b \cos \left (d x + c\right ) + 3 i \, b \sin \left (d x + c\right ) + 2 \, a}{3 \, b}\right )\right ) - 6 \, {\left (-i \, \sqrt {2} a b^{2} \cos \left (d x + c\right ) - i \, \sqrt {2} a^{2} b\right )} \sqrt {b} {\rm weierstrassZeta}\left (\frac {4 \, {\left (4 \, a^{2} - 3 \, b^{2}\right )}}{3 \, b^{2}}, -\frac {8 \, {\left (8 \, a^{3} - 9 \, a b^{2}\right )}}{27 \, b^{3}}, {\rm weierstrassPInverse}\left (\frac {4 \, {\left (4 \, a^{2} - 3 \, b^{2}\right )}}{3 \, b^{2}}, -\frac {8 \, {\left (8 \, a^{3} - 9 \, a b^{2}\right )}}{27 \, b^{3}}, \frac {3 \, b \cos \left (d x + c\right ) - 3 i \, b \sin \left (d x + c\right ) + 2 \, a}{3 \, b}\right )\right )}{3 \, {\left ({\left (a^{2} b^{2} - b^{4}\right )} d \cos \left (d x + c\right ) + {\left (a^{3} b - a b^{3}\right )} d\right )}} \]

[In]

integrate((a^2-b^2*cos(d*x+c)^2)/(a+b*cos(d*x+c))^(5/2),x, algorithm="fricas")

[Out]

-1/3*(12*sqrt(b*cos(d*x + c) + a)*a*b^2*sin(d*x + c) + (sqrt(2)*(-I*a^2*b + 3*I*b^3)*cos(d*x + c) + sqrt(2)*(-
I*a^3 + 3*I*a*b^2))*sqrt(b)*weierstrassPInverse(4/3*(4*a^2 - 3*b^2)/b^2, -8/27*(8*a^3 - 9*a*b^2)/b^3, 1/3*(3*b
*cos(d*x + c) + 3*I*b*sin(d*x + c) + 2*a)/b) + (sqrt(2)*(I*a^2*b - 3*I*b^3)*cos(d*x + c) + sqrt(2)*(I*a^3 - 3*
I*a*b^2))*sqrt(b)*weierstrassPInverse(4/3*(4*a^2 - 3*b^2)/b^2, -8/27*(8*a^3 - 9*a*b^2)/b^3, 1/3*(3*b*cos(d*x +
 c) - 3*I*b*sin(d*x + c) + 2*a)/b) - 6*(I*sqrt(2)*a*b^2*cos(d*x + c) + I*sqrt(2)*a^2*b)*sqrt(b)*weierstrassZet
a(4/3*(4*a^2 - 3*b^2)/b^2, -8/27*(8*a^3 - 9*a*b^2)/b^3, weierstrassPInverse(4/3*(4*a^2 - 3*b^2)/b^2, -8/27*(8*
a^3 - 9*a*b^2)/b^3, 1/3*(3*b*cos(d*x + c) + 3*I*b*sin(d*x + c) + 2*a)/b)) - 6*(-I*sqrt(2)*a*b^2*cos(d*x + c) -
 I*sqrt(2)*a^2*b)*sqrt(b)*weierstrassZeta(4/3*(4*a^2 - 3*b^2)/b^2, -8/27*(8*a^3 - 9*a*b^2)/b^3, weierstrassPIn
verse(4/3*(4*a^2 - 3*b^2)/b^2, -8/27*(8*a^3 - 9*a*b^2)/b^3, 1/3*(3*b*cos(d*x + c) - 3*I*b*sin(d*x + c) + 2*a)/
b)))/((a^2*b^2 - b^4)*d*cos(d*x + c) + (a^3*b - a*b^3)*d)

Sympy [F(-1)]

Timed out. \[ \int \frac {a^2-b^2 \cos ^2(c+d x)}{(a+b \cos (c+d x))^{5/2}} \, dx=\text {Timed out} \]

[In]

integrate((a**2-b**2*cos(d*x+c)**2)/(a+b*cos(d*x+c))**(5/2),x)

[Out]

Timed out

Maxima [F]

\[ \int \frac {a^2-b^2 \cos ^2(c+d x)}{(a+b \cos (c+d x))^{5/2}} \, dx=\int { -\frac {b^{2} \cos \left (d x + c\right )^{2} - a^{2}}{{\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {5}{2}}} \,d x } \]

[In]

integrate((a^2-b^2*cos(d*x+c)^2)/(a+b*cos(d*x+c))^(5/2),x, algorithm="maxima")

[Out]

-integrate((b^2*cos(d*x + c)^2 - a^2)/(b*cos(d*x + c) + a)^(5/2), x)

Giac [F]

\[ \int \frac {a^2-b^2 \cos ^2(c+d x)}{(a+b \cos (c+d x))^{5/2}} \, dx=\int { -\frac {b^{2} \cos \left (d x + c\right )^{2} - a^{2}}{{\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {5}{2}}} \,d x } \]

[In]

integrate((a^2-b^2*cos(d*x+c)^2)/(a+b*cos(d*x+c))^(5/2),x, algorithm="giac")

[Out]

integrate(-(b^2*cos(d*x + c)^2 - a^2)/(b*cos(d*x + c) + a)^(5/2), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {a^2-b^2 \cos ^2(c+d x)}{(a+b \cos (c+d x))^{5/2}} \, dx=\int \frac {a^2-b^2\,{\cos \left (c+d\,x\right )}^2}{{\left (a+b\,\cos \left (c+d\,x\right )\right )}^{5/2}} \,d x \]

[In]

int((a^2 - b^2*cos(c + d*x)^2)/(a + b*cos(c + d*x))^(5/2),x)

[Out]

int((a^2 - b^2*cos(c + d*x)^2)/(a + b*cos(c + d*x))^(5/2), x)